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The mechanism of pattern formation in reaction-diffusion systems is treated as an interesting subject, generally
for understanding self-organization observed in living systems and natural phenomena. Several spatial patterns
appear in the reaction-diffusion systems where an activator and an inhibitor coexist as an intermediate, as
represented by a traveling wave, a stationary wave called a Turing structure, etc. Here, we show new kinds
of waves in reaction-diffusion systems, which exhibit reciprocating motion without colliding into each other
or blinking periodically. These patterns have never been observed in the conventional numerical models,
although experimentally oscillating spots have been often observed. Our model demonstrates that other than
the ratio of diffusion coefficients for both intermediates, the thickness of reaction media acts to generate
inhibitory effect. The spatial factor of the medium contributes to new pattern formation in reaction-diffusion
systems. For the design of new functional materials, the concept might be useful as a simple controlling
method for pattern dynamics.

Introduction

Pattern dynamics in reaction-diffusion systems has been
widely studied both theoretically and experimentally. As
examples of waves observed in reaction-diffusion systems, it
is known that the following patterns appear: “traveling wave”,
which propagates in the media at constant rate, “breezing wave
(pulsating wave)”, which expands and shrinks, and “stationary
wave”, which does not move.1,2 Traveling waves can be typically
observed in the Belousov-Zhabotinsky (BZ) reaction.3 When
the ratio of the diffusion coefficient for the inhibitor to the
activator’s is enough large, stationary waves (well-known as
“Turing structure”) often appear. By the experiment using
acrylamide gel membrane as a medium for the CIMA (chlorite-
iodide-malonic acid) reaction, such stationary waves were
actually observed.4,5 Turing structure is recognized as the
significant model for explaining pattern dynamics on animal’s
skin. Kondo et al.6,7 showed the hypothesis that the pattern
formation on the angelfish is due to the Turing structure and
recently succeeded in exhibiting experimental data to support
this hypothesis by artificially causing the reaction-diffusion
waves on the skin of mutant mouse. When the ratio of
diffusivities is large, it is also demonstrated from the Gray-
Scott model that a self-replicating pattern like cell division can
be obtained.8,9 Lee et al.8,10experimentally observed such a self-
replicating pattern in acrylamide gel membrane by causing FIS
(ferrocyanide-iodate-sulfite) reaction using a continuous-flow
stirred tank reactor (CSTR) and showed a coincidence with the
simulation by the model.

Typically the ratio of diffusivities is set to 2 in the Gray-
Scott model for the numerical simulation of the FIS reaction.
In this condition, all of the patterns obtained from the simula-

tions for two-dimensional media finally result in stationary
waves as an equilibrium state. The stationary wave and the
pulsating wave then do not coexist. In the experiments using
gel membrane, however, periodical motions such as oscillating
spots and shrinking rings are often observed as steady-state wave
motion.11 This result suggests that the factor other than the ratio
of diffusivities affects the pattern formation. Spatial factor of
the medium must be primarily considered to control the patterns
because the characteristics of the reaction medium as an open
system will vary with the change in inside conditions. For
example, although the gel membrane is regarded as a two-
dimensional medium in simulation, the thickness of gel is often
not negligible. The new condition then appears that there is no
effect of the convective flow inside the gel. Therefore, we
consider the spatial effect on pattern formation as a practical
model.

Model

The Gray-Scott model represents the following autocatalytic
reaction.
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Figure 1. The physical situation of the reaction-diffusion model.

U + 2V f 3V (1)

V f P (2)
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Here, we consider the model as represented by Figure 1. The
gel sheet is in contact with a CSTR that supplies the reactants

and carries away the reaction products.U is fed to the CSTR,
andU andV are forced to excrete from the reactor. The reaction
occurs only in the gel phase. The pattern due to the reaction-
diffusion mechanism is created in the gel, and the outer CSTR
phase is negligible in the simulation. The pattern dynamics,
which is created in the gel, can be simulated via the following
equations.

Here, F and k represent the feed rate to CSTR and the rate
constant of eq 2, respectively. In addition to this conventional
model, we newly consider that the flow has no effect inside
the gel. The equations can then be reduced as follows.

The equations were solved by finite difference method. In
the simulation, we assume a cell as a minimum dimensionless
space unit. The gel is considered as an assembly of the cells.
(When the mesh is considered, one mesh point represents a cell.)
The gel size is expressed by the number of cells that are arranged
in the direction ofx, y, andz; that is,N × 1 × 1 means one-
dimensional gel,N × N × 1 means two-dimensional gel, and
N × 1 × N means linear gel with some thickness. As a result
of the simulation only using eqs 5 and 6, no pattern is formed
in any two-dimensional media. This means that no flow region
inside the medium acts to disturb the pattern formation on the
surface that is affected by flow. Coupling of inside and surface
conditions might have some effects to generate new pattern

Figure 2. Cross-sectional view of patterns formed in the linear reaction
media. The size for numerical calculations (length× width × thickness)
is (a) 100× 1 × 3, (b, c) 100× 1 × 5, (d) 100× 1 × 10. As the
initial condition, the local domain (length) 10) with the uniform
concentrationU ) 0.5 andV ) 0.25 was given at one or both ends.
The diffusion coefficients of inhibitor and activator are set to beDU )
2.0 × 10-5 andDV ) 1.0 × 10-5, respectively. The other parameters
used for calculation are (a)F ) 0.04, k ) 0.05, (b)F ) 0.07, k )
0.04, (c) F ) 0.08, k ) 0.04, (d) F ) 0.02, k ) 0.01. The color
represents the concentration ofV as follows: red (lower than 0.1),
yellow (0.1-0.2), green (0.2-0.25), blue (higher than 0.25).

Figure 3. Top view of patterns formed in the square medium with the size of 50× 50 × 5 for (a)F ) 0.02,k ) 0.03, and (b)F ) 0.02,k ) 0.02.
DU andDV are the same values as in Figure 1. The domain (5× 5 × 5) with U ) 0.5 andV ) 0.25 was given at the corner as the initial condition.

∂U/∂t ) -UV2 + F(1 - U) + DU∇2U (3)

∂V/∂t ) UV2 - (F + k)V + DV∇2V (4)

∂U/∂t ) -UV2 + DU∇2U (5)

∂V/∂t ) UV2 - kV + DV∇2V (6)
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formation. Therefore, here we give the spatial condition that
eqs 3 and 4 are applied only at the surface (the outermost layer
that contacts to the solution in CSTR), while eqs 5 and 6 are
applied inside the gel. Under this condition, pattern formations
in different reaction media with several sizes were simulated
by numerical calculation.

To evaluate the artifacts, the same simulations were attempted
by decreasing the mesh size and increasing the cell number for
the same gel size. When the mesh size is changed, the other
parameters that are affected by the changes of the cell size (e.g.,
the amount that is fed to the cell) are adjusted in the simulation.

Results and Discussion

Figure 2 shows the cross-sectional view of pattern dynamics
in linear media with different thickness. In the thinner medium
(Figure 2a), the stationary wave finally covers all the medium
as the Turing structure. In the thicker medium, however, the
traveling wave that turns back at the end and keeps on moving
is observed (Figure 2b). When the initial domains are given at
both ends, two waves that start from both ends move to the
center, but turn back before collision and keep on moving
(Figure 2c). These traveling waves do not collide with the right
and left boundaries. It is well known that the Turing structure
has an intrinsic wavelength that does not depend on the size of
the system. Similarly in our model, the length of closed structure
does not affect the pattern formation. Only the thickness affects
the pattern formation. Actually, as a result of simulation for a
longer medium with the same thickness (300× 1 × 5), the
same reciprocating waves as shown in Figure 2b and c were
obtained. In the much thicker medium, the blinking pattern that
repeats appearance and disappearance periodically is observed
(Figure 2d). Here, both making and erasing mechanisms seems
to act in pattern formation. As the thickness increases further-
more (e.g., 100× 1 × 100 size), such a blinking pattern appears
only near the surface; that is, the thickness has no influence
over a certain value. These results suggest that increasing
thickness has some effect as an inhibitor.

In the simulation, the equations were solved by finite
difference method. To confirm that these results are not due to
artifacts, we have attempted the simulation by decreasing the
mesh size and increasing the cell number for the same gel size.
As a result of decreasing the mesh size 5 times, the dynamic
behaviors of pattern formation, for example, generation of
dancing waves, do not change, although the spot size changes
somewhat as the effect that the surface layer becomes thinner.
This suggests that the results are not due to artifacts.

In a conventional two-dimensional medium, stationary wave
was formed by the interaction of local chemical dynamics and
diffusive transport; the inhibitor diffuses faster, and it disturbs
the activator’s diffusion. In our model, on the other hand, the
concentration difference between the surface and inside also
seems to play another important role to form spatial patterns.
BecauseU is force-fed to the reactor at constant rate, the
concentration ofU at the surface is always higher than that inside
the medium. On the other hand,V is force-excreted from the
reactor without a feed. As a result, concentration gradient must
be formed inside the medium; the concentration decreases
toward the inside forU but increases forV. The formation of
concentration gradient leads to diffusive transport toward the
opposite direction from each other;U migrates inside, whileV
migrates to the surface. This apparently has the same effect as
the reaction ofU f V occurring at the surface. Actually, the
same kinds of patterns can be obtained by the model simulation
for two-dimensional medium in whichU f V is newly added

to the kinetics as the other reaction process. From this result, it
is found that the new mechanism is spontaneously established
in our model.

Figures 3 shows the top view of pattern formation in the
square media with a certain thickness. The two traveling spots
that reciprocate with drawing of an arc symmetrically to each
other are observed on the surface (Figure 3a). They never collide
and continue dancing as a steady state wave motion. Under the
other flow conditions, the arc-shaped waves that repeat division
and fusion periodically are observed (Figure 3b). These patterns
are also formed by the same mechanism as considered in Figure
2. According to our model considering the thickness of medium,
the patterns change as ifDU/DV changes, although the ratio is
fixed actually. In experiments using gels, it is difficult to control
the ratio of diffusivities. Yet the result obtained here demon-
strates that the same effect can be easily obtained only by
changing the thickness of gels as a control parameter.

Figure 4. Phase diagram of the pattern formation with the changes in
parametersF andk for several media with different sizes: (a) 100×
1 × 10, (b) 100× 1 × 5, (c) 50× 50 × 5. Each character indicates
the observed patterns as follows: L, layer structure; B, homogeneous
blue state; R, homogeneous red state; Y, homogeneous yellow state;
T, Turing pattern; d, dancing wave; b, blinking wave; t, single trigger
wave.
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Figure 4 shows the phase diagram of the pattern formation
whenF andk are changed. Actually, several kinds of patterns
including the stationary wave appear with the change inF and
k. In general, the region where static and dynamic periodical
patterns appear (corresponds toT, d, andb) becomes smaller
as the thickness of the medium increases. It is a tendency that
the pattern formation is disturbed by increasing thickness. The
two-dimensional extent of surface area leads to an increase in
Turing structure region.

Our model not only suggests the mechanism of actually
observed oscillating spot in FIS reaction, but also shows a
possibility of new kinds of spatial patterns such as dancing and
blinking waves in experiments. These patterns are created by
the double inhibitory mechanism due to the spatial factor. Other
new patterns that have various properties may be possible by
coupling the inhibitory mechanisms and the geometry factor of
the reaction medium. Although there are few studies on the
design of functional materials utilizing reaction-diffusion waves
at present, the concept demonstrated here would be useful for
control of pattern dynamics and development of new functional
materials with the self-organizing function.
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